Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell

نویسندگان

  • Sandro Baldi
  • Alessio Bolognesi
  • Anne Cornelis Meinema
  • Yves Barral
چکیده

Although individuals of many species inexorably age, a number of observations established that the rate of aging is modulated in response to a variety of mild stresses. Here, we investigated how heat stress promotes longevity in yeast. We show that upon growth at higher temperature, yeast cells relax the retention of DNA circles, which act as aging factors in the mother cell. The enhanced frequency at which circles redistribute to daughter cells was not due to changes of anaphase duration or nuclear shape but solely to the downregulation of the diffusion barrier in the nuclear envelope. This effect depended on the PKA and Tor1 pathways, downstream of stress-response kinase Pkc1. Inhibition of these responses restored barrier function and circle retention and abrogated the effect of heat stress on longevity. Our data indicate that redistribution of aging factors from aged cells to their progeny can be a mechanism for modulating longevity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell

In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required ...

متن کامل

Live longer on MARS: a yeast paradigm of mitochondrial adaptive ROS signaling in aging

Adaptive responses to stress, including hormesis, have been implicated in longevity, but their mechanisms and outcomes are not fully understood. Here, I briefly summarize a longevity mechanism elucidated in the budding yeast chronological lifespan model by which Mitochondrial Adaptive ROS Signaling (MARS) promotes beneficial epigenetic and metabolic remodeling. The potential relevance of MARS t...

متن کامل

Effect of Heat Stress Duration on Growth, Flowering and Electrolyte Leakage in Four Cultivars of Calendula officinalis

In the floriculture industry, the need for heat tolerant bedding plant cultivars is increasing because of the rising temperature around the world. A pot experiment was carried out to examine the impacts of four heat stress durations (0, 7, 14 and 21 days) on growth and ornamental traits to determine the relative heat tolerance of four cultivars of calendula (Calendula officinalis). Growth and d...

متن کامل

Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous

In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such...

متن کامل

Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence

Inhibition of growth signaling pathways protects against aging and age-related diseases in parallel with reduced oxidative stress. The relationships between growth signaling, oxidative stress and aging remain unclear. Here we report that in Saccharomyces cerevisiae, alterations in growth signaling pathways impact levels of superoxide anions that promote chronological aging and inhibit growth ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017